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Abstract The symmetries that appear in many constraint problems can be used to signif-
icantly speed up the search for solutions to these problems. While the accurate detection
of symmetries in instances of a given constraint problem is possible, current methods tend
to be impractical for real-sized instances. On the other hand, methods capable of detecting
properties for a problem model — and thus all its instances — are efficient but not accurate
enough. This paper presents a new method for inferring symmetries in constraint satisfac-
tion models that combines the high accuracy of instance-based methods with the efficiency
of model-based methods; the key insight is that symmetries detected for small instances of
the model can be generalised to the model itself. Experimental evaluation shows that this
approach is able to find all symmetries in almost all the benchmark problems used. The
generality of our method is then illustrated by showing how it can be applied to infer other
properties.

1 Introduction

Many constraint satisfaction and optimisation problems have symmetries, which can be used
to significantly shorten the search time of traditional tree-search algorithms by applying
symmetry breaking techniques [8, 14, 10]. These techniques avoid searching symmetric
parts of the search space, yet still find all non-symmetric solutions.

The potential gains of symmetry breaking have motivated interest in analysis methods
that can detect symmetries in a constraint problem (e.g. [11, 2, 30, 27]). Most of these
symmetry detection methods are run for every constraint problem (or instance) even if the
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instances have the same model and only differ in the particular data used as input. The in-
stance data is used during the detection process to increase the accuracy of the detection
methods and, therefore, the detected symmetries apply only to that instance. As a result,
while instance-based symmetry detection methods can be very accurate, their detection pro-
cess is often so costly that it nullifies or even outweighs the savings achieved by exploiting
the detected symmetries. This usually makes instance-based symmetry detection methods
impractical for large instances.

The time taken to detect symmetries is easier to offset if it is performed only once for
a given problem model in such a way that the detected symmetries apply to all instances of
that model; this way, we no longer need to analyse each instance individually. While this
approach misses any symmetry that applies to some — but not all — instances of the model,
it makes symmetry detection practical. Unfortunately, analysing the problem model without
the instance data often results in a substantial loss of accuracy. Furthermore, current model-
based symmetry detection methods either strongly depend on the constraints used to specify
the problem model to gain accuracy [36], or require manual intervention by the user [30, 18].

We propose a new symmetry detection method that combines the high accuracy of
instance-based detection methods with the performance advantages of the model-based
methods. Figure 1 provides an overview of the method, which has the following steps:
(1) use accurate instance-based methods to detect the symmetries of several small instances
of the model, (2) lift these instance symmetries to the model level, obtaining a set of can-
didate model symmetries, (3) filter these candidates to eliminate those that clearly do not
hold for the model, thus obtaining a set of likely candidates, and (4) prove that these likely
candidates are symmetries of the model. These steps correspond to an inductive reason-
ing process, where the fourth step attempts to formally prove the veracity of the induced
symmetries. Thus, it is similar to, for example, the approach of Charnley et al. [3] where
inductive reasoning is used to find implied constraints and a theorem prover is then used to
prove that the induced constraints hold. On a common set of benchmarks, our current (rela-
tively ad hoc) implementation of the method is capable of detecting all symmetries as likely
candidates in all but two benchmarks. As this paper shows, our method can also be used for
inferring other model properties, such as subproblem equivalence.

The main contributions of this paper are as follows. First, we introduce a new method
for accurately detecting symmetries in constraint models. For this we provide (a) an abstract
definition of a symmetry acting on a model that can be handled algorithmically — called
a parameterised symmetry, — given in Definition 1, and an extension of this definition to
sets of symmetries acting on a model, given in Definition 2, (b) a simple and effective (al-
though ad hoc) method of lifting symmetries from instances to models, given in Section 4.2,
and (c) a method for combining the symmetries found for several instances and recover-
ing missing model symmetries. Second, we present an experimental evaluation on a set of
benchmarks showing that our current implementation is practical and accurate (Section 7).
And third, we offer a generalisation of our symmetry detection method to detect other prop-
erties of constraint models (Section 8).

This paper extends and revises earlier work [23] by generalising the method to other
properties, providing a more extensive experimental evaluation, and providing a much more
detailed explanation and formalisation of the patterns and algorithms used for lifting sym-
metries from instances to models. The paper is organised as follows. Section 2 provides the
necessary background on constraint satisfaction problems, their symmetries and problem
models. Section 3 defines model symmetries. Section 4 presents the new symmetry detec-
tion method and describe its steps in detail. Section 5 discusses the limitations of the method.
Section 6 illustrates our implementation via several examples. Section 7 presents and dis-
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Fig. 1 Method overview.

cusses an experimental evaluation of the method. Section 8 presents a generalised form of
the method. Section 9 discusses related work. Finally, Section 10 concludes the paper.

2 Background
2.1 Constraint Satisfaction Problems (CSPs)

Let vars(O) denote the set of variables of object O. A constraint satisfaction problem (CSP)
is a tuple (X,D,C) where X is a set of variables, D is a function that maps each variable
in X to its domain (a finite set of values), and C is a set of constraints such that vars(C) C
X. For brevity, we write D = {ay,...,a,} when all variables in X have the same domain
{a1,...,a,}, and we denote the set of consecutive integers {i,i+ 1,i+2,...,j} by i..j.

Consider the CSP P = (X, D,C). A literal of P is a pair (x,d), written as x = d, where
x € X and d € D(x). We denote the set of all literals of P by lit(P). An assignment of P over
V C X is a subset of lir(P) with exactly one literal per variable in V. A constraint ¢ € C is a
set of assignments over vars(c) C X, usually denoted by a formula. An assignment A of P
over V C X satisfies ¢ if and only if both vars(c) C V and the projection of A over vars(c)
(defined as {(x =d) | (x =d) € AAx € vars(c)}) is a member of c. Finally, a solution of P
is an assignment of P over X that satisfies every constraint in C. Where the identity of P is
clear, we will omit the “of P part.

Example 1 Consider the Latin square problem of size N whose aim is to find an N x N
matrix of values from 1 to N such that each value occurs exactly once in each row and
exactly once in each column. The Latin square problem of size 3 can be represented as a
CSP with 9 integer! variables {x;; | i,j € 1..3} where x;; represents the cell in row i and

! In general the Latin square problem does not require the values in the cells to be integers. We have used
integers as they are well supported by constraint solvers.
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X11 | X12 | X13 1 3 2 1 2 3
X21 | X22 | X23 2 1 3 3 1 2
X31 | X32 | X33 3 2 1 2 3 1

Fig. 2 Variables in the CSP of the Latin square problem of size 3 and two possible solutions.

column j, as shown in the left hand side of Figure 2. The domain of each variable is 1..3
and C contains 18 disequality constraints that ensure each value occurs exactly once in each
row and exactly once in each column. Formally, the CSP is defined as P = (X,D,C) where:

X = {x11,%12,%13,X21,%22, %23, X31,%32, X33 }

D= 1.3

C= {x11 #x12,%11 #X13,%12 # X13,X01 F X22,X21 F X23,X20 7 X23,

X31 7 X32,X31 7 X33,X32 7 X33,X11 7 X21,X11 7 X31,X21 7 X31,
X12 7 X22,X12 7 X32,X02 7 X32,X13 7 X23,X13 7 X33,%23 7# X33 }

Assignment {x;; = 1,x; = 3} satisfies constraint x| # xp1, while assignment {x;; =
1,x21 = 1} does not. Assignment {x1; = 1,x2; = 3,x3; = 1} satisfies x;; # x»1 but does not
satisfy x11 # x31. Figure 2 also shows two possible solutions of P. O

For simplicity, we focus on satisfaction problems. However, the results can be extended
to optimisation problems by representing the optimisation function as an additional con-
straint. To be precise, an optimisation function op#(x1,x2,...,x,) is treated (for symmetry
detection purposes) as the constraint z = opt(xy,x,...,X, ), where z is a new variable.

2.2 Symmetries of a CSP

A solution symmetry of a CSP P = (X, D, C) is a permutation on /it(P) that preserves the set
of solutions of P [5]. Two important kinds of solution symmetries are induced by permuting
either the variables in X or the values in the range of D.

A permutation f on X induces a permutation py on lit(P) defined as pp(x = d) =
(f(x) =d), where x € X and d € D(x), if Vx: D(x) = D(f(x)). A variable symmetry is
a permutation on X whose induced permutation on /it(P) is a solution symmetry [26].
A set of value permutations f;, one on each D(x;),x; € X, induces a permutation ps on
lit(P) by defining py(xi = d) = (x; = fi(d)). A value symmetry is a set of value per-
mutations whose induced permutation on /if(P) is a solution symmetry [26]. We will use
(xdy,...,xd,) < (xdy,...,xdy), where xdi,...,xd,,xdy,... ,xd, are either variables in X
or values in the range of D, to denote a permutation that maps each xd; to xdy, and vice
versa, leaving the unmentioned variables or values unchanged. As a special case, when all
permutations of a set of variables (resp. values) are solution symmetries, we say that the set
of variables (values) is interchangeable [11].

A variable-value symmetry is any solution symmetry that is not a variable symmetry or
a value symmetry. Note that a variable-value symmetry is not necessarily a composition of
variable and value symmetries.

Example 2 The CSP given in Example 1 to represent the Latin square problem of size 3 has,
among others, the following symmetries:
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e Value symmetries that swap any two values: (1) <> (2), (1) <> (3), and (2) <> (3) (there-
fore all three values are interchangeable)

e Variable symmetries that swap any two columns in the square:

(11, x21,X31) 4 (X¥12,X22,X32), (X11,%21,%31) <> (X13,%23,%33), and
(x12,X22,X32) ¢+ (x13,%23,X33)

e Similar variable symmetries that swap any two rows in the square.

e Variable symmetries across a diagonal: (x;; = k) — (x;; =k),Vi, j,k € 1..3; this symme-
try (which corresponds to a reflection of the board) is shown in Figure 2 mapping one
solution to another.

e Variable-value symmetries that swap the rows (or columns) with the values, e.g. the
symmetry (x;; = k) — (xi = j),Vi, j,k € 1..3. Note that these symmetries are not com-
positions of any variable and value symmetries.

Other common symmetries, such as board rotations, can be obtained by composing those
mentioned above. O

A permutation group is a set of permutations that is closed under composition and in-
verses. The solution symmetries of a CSP P form a permutation group, where each element
is a permutation on the set of literals /iz(P). Given permutations {fi, f2, ..., f,} on lit(P),
we denote by [f1, f2, ..., fn] the closure under composition and inverses of {f1, f2,...,fn}-
Given a permutation group G, if [f1, f2, ..., f4] = G then {f1, f2,..., fn} is called a generat-
ing set of G and is said to generate G. A generating set is minimal if any proper (i.e. strictly
smaller) subset of the generating set generates a proper subgroup.

Example 3 The symmetries of the CSP given in Example 1 to represent the Latin square
problem of size 3 form a group G of cardinality 6(3!)3 = 1296 that can be generated by,
among others, the following four symmetries:

Swap rows 1 and 2: (x11,x12,X13) ¢ {(X21,X22,X23).

Swap rows 2 and 3: <X217XQ2,)623> R d <X31,X32,X33>.

Reflect the square diagonally (x;; =k~ x;; =k, Vi, j,k € 1..3).
Swap the row index with the value (x;; = k — x; =i, Vi, j,k € 1..3).

Therefore, these four symmetries form a generating set for G. The generating set is minimal
since any proper subset is not a generating set for G. a

2.3 Detecting symmetries of a CSP via graph automorphism

A hyper-graph is a pair (V,E) where V is a set of vertices and E is a set of hyper-edges, each
of which is a non-empty subset of V. An automorphism (or symmetry) f of a hyper-graph
(V,E) is a permutation of V that preserves E, i.e. a permutation such that V{v;,...,v;} € E:
{f(vi)7- .. 7f(vj)} €E.

Several methods have been defined for automatically finding the symmetries of a CSP
P by representing it as a (hyper-)graph G in such a way that each automorphism of G corre-
sponds to a solution symmetry of P (see, for example, [27, 29, 5, 21]). The main difference
among these methods is in how the elements of P are mapped to the vertices and hyper-edges
of G.

In this paper we will use the full assignments graph representation defined in [21].
Briefly, the full assignments graph is built from a given CSP P = (X,D,C) by (a) repre-
senting every literal in lit(P) as a vertex; (b) representing every constraint ¢ € C by a set
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Fig. 3 Full assignments graphs and generating sets for LatinSquare[3] and LatinSquare[4]. Note that parts of
the graph are omitted for legibility.

of hyper-edges: either a hyper-edge for every assignment that does not satisfy ¢ or a hyper-
edge for every assignment that satisfies c; and (c) adding an edge between every two literals
that assign different values to the same variable. The choice of whether to use satisfying or
unsatisfying assignments can be made independently for each constraint (often choosing the
one that would result in the least amount of edges).

Example 4 The full assignments graph for the CSP given in Example 1 to represent the
Latin square problem of size 3 is shown in the left hand side of Figure 3. The 9 x 3 =27
literals in the instance x;; = k, where i, j, k € 1..3, are represented by the 27 vertices in the
graph, each labelled x;jx, where the x has been omitted in the graph for clarity. The graph
also has (18 x 3) edges representing the 3 assignments that do not satisfy each of the 18
constraints, plus (9 x 3) edges connecting the 3 different values of each of the 9 variables.
The front-most face of the cube contains the vertices representing the literals that assign
value 1 to each variable, while the middle slice assigns value 2 and the back face assigns
value 3. Each variable can be seen as a line formed by the three vertices perpendicular to
the front-most face. Note that much of the graph is omitted for the purpose of legibility.
The bold arrows correspond to the elements of a generating set of symmetries and will be
described later. O

We chose to use the full assignments graph representation in our implementation be-
cause it is relatively simple and often more powerful than that of Puget [27] without being
as computationally demanding as that of Cohen et al [5]. However, our method can use any
graph representation whose automorphisms correspond to the symmetries of the CSP?.

Once the CSP is represented as a graph, standard tools such as Saucy [9] can be used
to compute the automorphisms of the graph and return its symmetry group via a generating
set. Note that such tools may return any generating set, including a non-minimal one.

2 Further, as we will see in Section 4, our method can use any instance-based method capable of inferring a
generating set of symmetries for a given CSP. We focused on graph-based methods because they are currently
the most accurate ones.
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Example 5 Consider the graph built in Example 4 for the CSP representing the Latin square
problem of size 3 and recall that vertex X;j; represents literal x;; = k. The automorphism
detection tool Saucy returns the generating set {A, B, C, D, E, F}, where the elements
(illustrated as bold arrows in the left hand side of Figure 3) are as follows:

A (X121,X122,X123, X221, X222, X223, X321, X322, X323) <
(X131,X132,X133,X231,X232, X233, X331, X332, X333)

(X211,X212, X213, X221, X222, X223, X231, X232, X233) ¢
(X311,X312,X313,X321,X322, X323, X331, X332, X333)

C (X121,X122,X123,X131,X132,X133,X231,X232,X233) >
(X211,X212,X213,X311,X312, X313, X321, X322, X323)

D (x111,X121,X131,X211,X221,X231, X311, X321, X331) <>
(X112,X122,X132,X212,X222, X232, X312, X322, X332)

(X112,X122,X132, X212, X222, X232, X312, X322, X333) &>
(X113,X123,X133,X213,X223, X233, X313, X323, X333)

(Xl12,X113,X1237X2|27X2|37X2237X3|2,X3137X323> A4
(X121,X131,X132,X221,X231, X232, X321, X331, X332)

=

=

e

Symmetry A has the effect of swapping the variables in columns 2 and 3 of the Latin square,
since it maps literal x;» = k to x;3 = k, and vice versa. Similarly, B swaps those in rows 2 and
3, C reflects the variables in the square across the top-left/bottom-right diagonal, D swaps
values 1 and 2, E swaps values 2 and 3, and F swaps the second dimension of the cube with
the value dimension (i.e. it maps literal x;; = k to x; = j). Their combination results in a
group that contains the symmetries detailed in Example 2, e.g. to swap columns 1 and 2
of the Latin square (symmetry (xi1,%21,x31) <> (X12,%22,%32) wWhen defined in terms of the
variables, and (X111,X211,X311,X112,X212,X312,X113,X213,X313) >
<X121,X2217X3217X122,X222,X322,X123,X223,X323> when defined in terms of the literals) one
can apply first F, then D, and then F again. Note that the generating set returned by Saucy
is not minimal, since the set {C,D,E,F} generates the same symmetry group.

Consider now the right hand side of Figure 3, which represents the Latin square problem
of size 4. Saucy returns the generating set {A,B,C,D,E,F,A1, B1,E1} where the first six
symmetries are simple extensions of those found for size 3. For example, the symmetry A
obtained for size 3 extends to size 4 as:

A <X1217X1227X1237X1247X221~,X2227'~~;X3217~~~7X4217'~-> As
<X|31,X132,X133,X134,X231,X232,....,X33|,...,X43],...>

and similarly for B, C, D, E and F. The other three are defined as:

A1 (X131,X132,X133,X134,X231,X232, - - -, X331, - -, X431 5 - - )
(X141,X142,X143, X144, X241, X242, - -, X341, -+ -, Xdd1 - - )

B1 (X311,X312,X313,X314,X321,X322, -, X331, .- -, X341,...) &>
<X4|] ;X412,X413,X414,X421,X422, - - -, X431, - .-, X441, - - >
<X113J<1237X133,7(1437X213,X223,‘--~,le37---,Xmy Do
(X114,X124, X134, X144, X214, X224, - - -, X314, - - -, X414, - - -) O

A1 swaps columns 3 and 4, B1 swaps rows 3 and 4, and E1 swaps values 3 and 4. a

3 From instance symmetries to model symmetries
3.1 CSP instances and CSP models

Our method distinguishes between a problem model (or CSP model) and a problem instance
(or CSP instance), something for which there is no standard, formal notation even though
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the concepts are present in many CP languages, such as MiniZinc [25]. For the purpose of
this paper, it is enough to define a CSP model as any specification that can be expressed as a
MiniZinc program with at least one parameter whose value is not given, where a parameter
can be an integer, a set of integers or a sequence of integers. A CSP instance of a CSP
model is then defined as the result of extending the model by providing values to all its
parameters. Therefore, a CSP instance also corresponds to a MiniZinc program, but one
where all the parameters are given values. We base our definitions of model and instance
data on MiniZinc because it is a well-defined language, well-known, reasonably expressive,
and has a clear correspondence with the formal CSP notation previously (and commonly)
used. In addition to this, MiniZinc has multi-dimensional arrays of variables and constants
and supports iteration, two features that are used by our method.

A problem model can thus be seen as a CSP P parameterised by Data, written herein as
P[Datal; i.e. P[Data] is an indexed family of instances P[d] for every index d € Data.® This
parameterisation also applies to its components, so P[Data] = (X[Data),D|Datal,C[Datal),
and a CSP instance P[d] is then the tuple (X[d],D[d],C[d]). For the purposes of this paper,
the parameter Data will be a tuple of integers.

Example 6 Consider the Latin square problem defined in Example 1. Its model can be writ-
ten as a parameterised CSP LatinSquare[N] as follows:

X[N]N'—) {x,'j\i,jEI..N}

DIN]:Nw— 1.N

CIN]:N — {x,-j;éx,»k|i,j€1..N,kej+1..N}U
{xj,- £ Xpi | i,jel.Nkej+ 1..N}

This model defines N? integer decision variables (all named x and distinguished by their
subscripts i, j) with values in 1..N and two sets of constraints, the first ensuring that the
values in each row are different, while the second does the same for the columns. The dif-
ference in the number of variables, values and constraints appearing in different instances of
LatinSquare[N] is simply a consequence of the different values given to N. Clearly, the CSP
instance obtained by instantiating N to 3 (LatinSquare[3]) is the one given in Example 1.
The corresponding MiniZinc program for this model is as follows:

int : N ;

array [1..N, 1..N] of var 1..N : x ;

constraint forall (i,j in 1..N, k in j+1..N) (x[i,j] '= x[i,k]) ;
constraint forall (i,j in 1..N, k in j+1..N) (x[j,i] !'= x[k,i]) ;

This model defines N2 integer decision variables x[i,j] with the same domain as before,
and has two quantified constraints that mimic those in the parameterised CSP LatinSquare[N]
above. O

In the rest of the paper we will provide examples using parameterised CSP notation
rather than MiniZinc notation, because we believe mathematical notation is more intuitive
to readers unfamiliar with MiniZinc notation, and because it makes explicit the parameters
of the CSP model that do not have values. However, we restrict our CSPs to those that are
direct translations of MiniZinc models. The original MiniZinc models for all the examples
in this paper are given in Appendix A.

3 We describe P[Data] as a family of instances indexed by Data, rather than an ordinary function from
Data to instances, to emphasise that a model is usually viewed as a collection of instances.
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Note that, for any problem model P[Data] there is a fixed set of m variable names, which
without loss of generality we can call xbx%, . X" (or justxif m =1, as for LatinSquare[N]).
Each variable x" has a fixed number of subscripts n, and the set of x” variables in any instance
P|d] of P[Data) is determined by the ranges of its subscripts, which often depend on d (as
subscripts i and j in LatinSquare[N] where determined by N). We can thus characterise the
set of variables in any instance of a model by giving the range of each subscript of each
variable. Further, since without loss of generality we can start each range at the lower bound
of 1, the set of variables in each instance can be specified by just the upper bound of each
subscript. The same applies to the variable’s values.

3.2 Model symmetries

As stated in the introduction, our method requires us to lift the symmetries from instances
to models, i.e. it requires us to describe the symmetries in terms of the model rather than as
permutations of the literals in a particular instance of that model. This is possible because
symmetries that occur across different instances of the same model often share a common
structure, or pattern.

Example 7 Consider the LatinSquare[4] instance from the LatinSquare[N] model instanti-
ated with N = 4. As discussed in Example 5, its associated full assignments graph is shown
in the right hand side of Figure 3, together with the generating set found by the automor-
phism detection tool Saucy. The elements of this generating set are very similar to those
found for N = 3 (left hand side of Figure 3). Six of them (A, B, C, D, E, and F) follow ex-
actly the same pattern as those described in Example 2, even though they are not identical.
For example, both symmetries denoted as B follow the pattern “swap rows 2 and 3”, even
though B maps literal x4, to literal x34; in LatinSquare[4] but not in LatinSquare[3], since
those literals do not even exist in its graph. The other three symmetries for LatinSquare[4]
(A1, B1, and E1) are new. O

In order to describe such patterns, we need to describe permutations in terms of the
model’s input parameters. To achieve this we introduce the notion of parameterised permu-
tation. (See Fig. 4 for an overview of the relationship between permutations, symmetries
and their parameterised versions.)

Definition 1 Given a model P[Data], a parameterised permutation is an indexed family
f[Data] that maps each d € Data to a permutation of the literals in lit(P[d]). A model sym-
metry of P[Data] is a parameterised permutation f[Data] such that for all values d € Data,
f[d] is a solution symmetry of P[d].

To define a parameterised permutation of model P[Data], we need to identify literals
across its instances. To achieve this we will describe a literal as we did for vertices in the
full assignments graph, that is, by using the name of its variable (in bold) subscripted by a
tuple containing the indices specified in the model for the variable and the value assigned
to it. The components of this tuple will be referred to as its dimensions. In this way, literals
can be naturally arranged into one or more multi-dimensional matrices, each named by the
variables occurring in its literals. The sizes (number of dimensions and number of elements
in each dimension) of the matrices can be obtained by the function Dims, where for a given
d € Data:

Dims(d) = (x'(d},d},...,d} ),....x"(d}"d5',....d}.))
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Fig. 4 Relationship between permutations and symmetries, and their parameterised versions.

where m is the number of matrices, x” is the name of the r! matrix, n, is the number of
dimensions in x" and d} is the number of elements in the k™ dimension of matrix x” for
k € 1..n.,r € 1..m. Note that the number m of matrices and the number n, of dimensions
in each matrix, are fixed for a given model and do not depend on the data, since they are
uniquely determined by the name of the variables and the associated indices given in the
model. The only thing that changes is the number of elements in each dimension.

Example 8 The literals in any instance of the LatinSquare[N] model can be arranged into a
single 3-dimensional matrix named x where literals are uniquely identified by x;;,, where
i,j,v € 1..N (recall that, in the graphs of Figure 3, we eliminated the name x for clarity).
Therefore, Dims(N) = (x(N,N,N)). As is apparent in the figure, the only difference between
the vertices of the graphs of LatinSquare([3] and LatinSquare[4] is the number of elements in
each dimension of this matrix: Dims(3) = (x(3,3,3)) while Dims(4) = (x(4,4,4)). O

Example 9 Consider the Golomb ruler problem, where the task is to find a set of N integer
marks on a ruler, such that the absolute values of the differences between distinct marks are
different. The following model Golomb|[N] has two sets of variables, one holding N integer
variables (the marks) with domain 0..N2, and the other holding w integer variables (the
differences) with domain 1..N2.

X[N:Nw—  {m|i€ .N}U{d;j|i,j € 1.N,i < j}
DIN]: N+ {0..N?} for all m; and {1..N?} for all d;;
C[N]N}—) {mjfmi:dij\i,jelA.N/\i<j}U
{dij#dy i, j k1€ LLNNI<jAk<IN(i#kVj#I)}

The literals in every instance of the above model can be arranged into two matrices. The first
matrix has the literals of the mark variables, which are identified by m;;, where i € 1..N, j €
1..N% +1 such that m;; represents m; = j— 1. The difference variables d;; are flattened
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into a one-dimensional array with indices from 1 to w This flattening is performed

because the d;; variables in the model are only defined when i < j. Thus, the second matrix
has the literals of the flattened array of difference variables, identified by d;;, where i €

l..%d € 1..N?. Therefore, Dims(N) = (m(N,N* + 1)@(%»"’2)% =

As we will see later (Section 4.2), the symmetries detected by our system are those that per-
form relatively simple permutations on these matrices, such as swapping rows or columns.
Without loss of generality, we assume all variables of a given name have the same domain
(otherwise, we can always use a domain computed by the union of their domains and modify
the constraints accordingly).

Example 10 Consider a CSP model P[N] with Dims(N) = (x(N,N,N)). A parameterised
permutation f[N] to swap the first and second dimensions can be specified as Xj, iy, F> Xiyiy i3
Vi, i2,i3 € 1..N, where f maps an N equal to, say, 3 to the symmetry (Xj21,X122,X123,X131,
X132,X133,X231,X232,X033) > (X211,X212,X213,X311,X312,X313,X321,X322,X323). A parameter-
ised permutation to reflect the third dimension is specified as X; i,i; — X;i,(N—i311), fOr
i1,i2,i3 € 1..N. Note that the indices must remain within the bounds dictated by Dims(N).
O

The notion of parameterised permutation extends naturally to a parameterised set of
permutations. Note that a parameterised set of permutations is not simply a set of param-
eterised permutations, as the size of the set may depend on the parameter. To simplify later
explanation, we call a parameterised set of permutations a pattern.

Definition 2 Given a model P[Datal, a parameterised set of permutations (or pattern) is an
indexed family f[Data] that maps each d € Data to a set of permutations of the literals in
lit(P[d]). A parameterised set of symmetries of P[Data] is a parameterised set of permuta-
tions f[Data) such that for all values d € Data, every element in the set f[d] is a solution
symmetry of P[d].

Just as a set of permutations generates a permutation group, a parameterised set of per-
mutations generates a parameterised permutation group. That is, a pattern f[Data] generates
a parameterised permutation group G[Data] such that for each possible parameter d € Data,
the group G[d] is a permutation group of liz(P[d]).

Example 11 (Continued from Example 10.) Consider a pattern f[N] containing all adja-
cent swaps of the rows of LatinSquare[N]; that is, f[N] = {f12, f3, - - s Jv—1)(v) } where fi;
swaps rows i and j. The pattern f[N] is a parameterised set of symmetries of LatinSquare[N].
It generates the parameterised permutation group G[N], which for each instance is the group
containing all N! permutations of the rows. O

Note that the combination of model and data to create an instance often results in the
addition of auxiliary variables during the transformation of a high-level MiniZinc model
into a low-level instance, where constraints are flattened. These variables are (a) function-
ally dependent on the variables in the model, and (b) typically not used as search variables.
If the latter, they are not needed when detecting symmetries. If so, we can simply eliminate
auxiliary variables from the domain and codomain of the symmetry. If a symmetry maps a
non-auxiliary variable to an auxiliary variable, then that symmetry can be discarded alto-
gether. In fact, functionally dependent variables that are not used during the search might
already be present in the model, as they are often used to propagate information. For ex-
ample, in the Golomb ruler model of Example 9, the difference variables are functionally
dependent on the mark variables and the search is often performed on the mark variables.
Thus, the instance (and model) symmetries only need to consider the m; variables.
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4 A method for detecting model symmetries

Our approach to automatic model symmetry detection is based on a method that takes as
input a model P[Data] and a small set V C Data of input values that result in small instances,
and combines them to perform the following steps:

1. For each d € V, detect a generating set Generating,; of a symmetry group in instance
P[d],

2. For each d € V, lift each o € Generating, to a parameterised permutation of P[Datal,
obtaining the set of candidate patterns Candidates,,

3. Create a subset Likely of | cy Candidatesy containing only those elements that are
likely to be parameterised sets of symmetries of the model,

4. Prove whether the elements of Likely are indeed parameterised sets of symmetries of the
model, or not.

Note that in the first step we would like Generating,; to be small (for efficiency) and to
generate the entire symmetry group of P[d] (for accuracy). Also note that the third step is
not strictly necessary but can make the proof step more efficient by eliminating candidates
that are known not to hold for at least one instance. The rest of this section explains the
above steps in detail, and describes how each of them is implemented in the system.

4.1 Step one: Detecting instance symmetries

In this step, our implementation of the method combines the MiniZinc model P[Data] with
each element d € V to create the instances P[d], obtains the full assignments graph of every
P|d], and then uses Saucy to return the generating set Generating, of its symmetry group, as
described in Section 2.2. In practice, it might be useful to integrate several graph representa-
tions with different accuracy/complexity trade-offs. This would allow the implementation to
use a less demanding representation whenever the size of the graph required by a more ac-
curate one was deemed too high. For example, while the size of the full assignments graphs
obtained during our experimental evaluation was manageable, it might become unmanage-
able for problems with constraints that contain large numbers of satisfied and not satisfied
assignments.

If the set V is not provided as input, our implementation can automatically generate it if
the elements of Data are tuples of k integers (py, p2,...,px)- This is done by starting from
some user-defined base tuple, typically the smallest meaningful instance of the model, and
increasing each p; individually until there are enough instances to ensure diversity. Note that
although this process may generate an unsatisfiable instance, this does not cause symmetries
to be missed since all valid permutations are solution symmetries of unsatisfiable instances.
It might, however, result in spurious parameterised permutations being added as candidates
in step two.

Example 12 In the model of the Latin square problem given in Example 6, Data has a single
component: the board size N. If the user provides (2) as the base tuple, we increment the
component three times obtaining four values for d: (2), (3), (4), and (5). In the model
of the Social Golfers problem given later in Section 6.2, Data has three components: the
number of weeks, groups per week and players per group. If the user provides (2,2,2)
as the base tuple, we increment each component twice to get seven distinct values for d:
(2,2,2),(3,2,2),(4,2,2), (2,3,2),(2,4,2), (2,2,3), and (2,2,4). ad



A Method for Detecting Symmetries in Constraint Models and its Generalisation 13

Algorithm 1 MATCH(o, f[Datal, d) returns frue iff symmetry o of instance P[d] matches
parameterised permutation f[Data].

function MATCH(0o, f[Datal, d)
for ¢ € lit(P|d]) do
if 6(¢) # f[d](¢) then return false
end for
return true
end function

4.2 Step two: Lifting symmetries to parameterised permutations

The aim of this step is to construct, for each d € V, a set Candidates; of patterns derived
from the symmetries Generating, detected in step one for P[d]. The construction process
has two separate phases.

4.2.1 Phase One

For each ¢ € Generating,, phase one tries to find one or more patterns f[Data] that match
o for d (i.e. for which f[d] = {o}) so that it can add f[Data] to Candidates,.

Note that in Phase one we consider only patterns that give a singleton set for all in-
stances. Therefore, in this phase we identify a pattern with its sole parameterised permuta-
tion.

A Boolean function to check whether a given ¢ matches a given f[Data] for d is shown
in Algorithm 1. It returns false as soon as the results of applying f[d] and o to a literal of
P|[d] differ, and true if they are the same for all its literals. Note that the set of literals in
P|d] is automatically (and lazily) generated by the implementation each time the function is
executed.

Example 13 Consider again the LatinSquare[3] instance which, as shown in Example 8, has
dimension sizes Dims(3) = (x(3,3,3)). The generating set found by Saucy for this instance
(given in Example 5) includes symmetry F, which swaps dimensions 2 and 3. For N = 3, this
symmetry matches a parameterised permutation f[N] defined as Xijiziy ™ Xijizins Vil,12,03 €
1..N. This is because the result of applying f[3] to any literal / in LatinSquare[3] is equal to
that obtained when applying F to [. Therefore, we would like f[N] to be added to Candidatess.
O

While a symmetry might match many different parameterised permutations, most of
them are unlikely to occur in other instances of the model. Therefore, we would like to
restrict the space of parameterised permutations to those that are likely to apply across all
instances.

We look for patterns that can be built by a fixed set of pattern constructors. These rep-
resent the kinds of symmetry that occur commonly in CSP models. Each pattern constructor
takes some set set of arguments as input and produces a pattern. For a given model P[Datal,
we construct a set called Patterns which contains all the instantiations of the pattern con-
structors that make sense for that model.

We first describe how the basic patterns are built. For a given model P[Data], with
Dims(d) = (x(d,,ds,...,d,)) for d € Data, the set of basic patterns contains the following
patterns:
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— Dimension invert (DI) on the k™ dimension:

Dﬂ[k] N Xi1~~in — X,-]

ey (dg—ig+1) igyy-mein

— Dimension swap (DS) on dimensions k < k'

DS[k, k'] = Xi,._iy — X,

P Y TSN PO VR ik/+]---in

— Index swap (IS) in the k™ dimension for index values v < V' < dj:

Xijig1 V' igg1onein ifig=v

/1. e )
ISk, v, V'] X0y iy 7 Q Xiyoi g v iagoin B ik =V,
unchanged otherwise.

A pattern built by the DI pattern constructor corresponds to a parameterised permutation
representing the common case of either variable (if the instantiated k is smaller than n) or
value (if k = n) reflection symmetries. Consider, for example, the value reflection A (Fig-
ure 5) about the horizontal axis of the board of the N = 8 instance of the NQueens[N] model
introduced later in Section 6.1. This symmetry matches the pattern DI[2] which simultane-
ously reflects each of the sequences of literals (qi1,...,qin), (Q21,-- -, QoN), - - -5 (ANT5- - -, QNN)
and, thus, corresponds to the value reflection symmetry (1,...,N) > (N,...,1). A reflec-
tion symmetry also exists in every instance of LatinSquare[N] even though they are not
part of the generating set returned by Saucy, only of the generated group. In this case, the
vertical axis simultaneously reflects each of the N? sequences of literals (Xi11,...,Xin1),
<X112, . ,X1N2>, cany <XN1N7 . 7XNNN>-

A pattern built by the DS pattern constructor corresponds to a parameterised permutation
representing another common reflection, that about a diagonal. For example, symmetry C
in both Latin square instances of Figure 3 matches the pattern DS[1,2]. Note that DSk, k']
represents a variable symmetry if k' < n and a variable-value symmetry if k' = n.

An pattern built by the IS permutation pattern corresponds to a parameterised permu-
tation representing the common case of symmetries that swap either two values (if the in-
stantiating k is equal to n) or two sequences of variables (if k < n), such as two rows or
two columns. The condition v’ < dj ensures that IS[k,v,V'] only applies to instances where
both v and V' are within the range of dimension k. Examples include the variable symme-
try A in both Latin square instances of Figure 3, which matches IS[2,2,3], and the value
symmetry D also in both Latin square instances, which matches IS[3, 1,2]. When k < n, the
IS[k,v,V'] pattern is an extension of the definition of column (or row) permutation by Van
Hentenryck et al. [36], for a bijection that swaps columns (or rows) v and v/, to the case
of an n-dimensional matrix (rather than a 2-dimensional one). We will often represent this
pattern using the notation X;, i, _; vir,y.in <> Xij.iy_; V/ ipy;..0, (Which indicates the swap-
ping of those literals leaving the rest unchanged), rather than the more verbose functional
notation used above.

In addition to the three basic patterns introduced above, our set of patterns used in Phase
one contains a projection variant where a given pattern p only applies to value v of dimension
[. This fourth pattern constructor is defined as follows:

— Projection (II) of pattern p on dimension / and index value a < d;:

X, .. ifij =
H[l,a,p] : X[l,__[n s p( l1...ln) 1 a
unchanged otherwise.
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Example 14 Consider a problem model P[Data] where each element of Data is an integer
N, where Dims(N) = (x(N,N)), and where the values of the first variable x; can be inverted.
This symmetry is a projection of the DI pattern, IT[1, 1, DI[2]], and maps literal x;; to:

{Xi(Nj+l) ifi=1

Xjj otherwise.

which, as for IS, we will represent using the notation Xy ; ¢+ Xy (y_ j 1), rather than the more
verbose functional notation used above. O

A pattern of the form IT(p,/,a) constructor corresponds to a parameterised permutation
representing the common case where a symmetry represented by the pattern p occurs only
for a particular subset of the variables or the values. Consider, for example, the variable
symmetry D for the instances of the Golf[W, G, P] model of the Social Golfers problem, in-
troduced later in Section 6.2. This symmetry swaps groups 1 and 2 of players but only within
week 1. It matches the parameterised permutation IT[1,1,IS[2, 1,2]], which corresponds to
the IS pattern swapping values 1 and 2 of the second dimension (groups of players 1 and 2)
projected onto value 1 of the first dimension (week 1).

Phase one, described by Algorithm 2, starts the construction of Candidates; by trying to
match every symmetry ¢ in Generating, against every parameterised permutation in the set
PermPatterns; and collecting the matching parameterised permutations in Candidates,. In
our implementation, given a model P[Data] with Dims(d) = (x(dy,da, ... ,d,)) for d € Data,
PermPatterns, contains all instantiations of the basic pattern constructors, as well as all
instantiations of the projection pattern constructor. It is formally defined as:

PermPatterns, =Basica U{II[l,a,p] |l € 1..n,a € 1..d;,p € Basicy}
where
Basicq ={DI[k] | k € 1..n}
U{TIS[k,v,V'] | k€ 1..n, v,V € 1..dy, v <V'}
U{DS[k,k'] | k,k' € 1..n, k <K'}

One could easily increase the accuracy of the implementation by either adding other basic
pattern constructors, or allowing nested projections (that is, allowing p in II[/,a, p] to be a
projection pattern itself). Of course, this would have an associated cost (see Section 4.2.3
for details).

Note that at the end of phase one the system is able to inform the user of possibly miss-
ing patterns: if every Generating, set contains a symmetry that could not be matched, this
might indicate the existence of a missing pattern that would account for those unmatched
symmetries. Thus, the system produces a list of unmatched symmetries for the user’s in-
spection.

Example 15 Consider the generating set Generating; = {A,B, C,D,E,F} returned by Saucy
for the LatinSquare[3] in Example 5. During phase one of the detection process for d = 3,
its elements are automatically matched to the following elements of PermPatternss:

matches IS[2,2,3]: X, <> Xj3;,Vi,l € 1.N
matches IS[1,2,3]:  Xoj <> X3j,Vj,l € I.N
matches DSJ[1,2]: X;ji — X, Vi, j,l € 1L.N
matches IS[3,1,2]: X1 <> X;pp,Vi,j € LL.N
matches IS[3,2,3]:  X;jp <> X;j3,Vi,j € 1.N
matches DSJ[2, 3]: X;ji — X1, Vi, j,l € 1L.N

mEC AR
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Algorithm 2 Phase one of the construction of Candidates,.

function PHASE-ONE(d, Generating;)
Candidates < 0
for ¢ € Generating,; do
for p € PermPatterns; do
if MATCH(0, p,d) then Candidates, < Candidates; U {p}
end for
end for
return Candidates,;
end function

Since no other element of PermPatternsz is matched, at the end of phase one we have
Candidates; = {DS][1,2],DS[2,3],IS][1, 2, 3],IS[2,2,3],IS[3, 1, 2],IS[3,2,3] } and the algorithm
moves to d = 4. The first six symmetries in the set Generating, = {A,B,C,D,E,F,A1,B1,
E1} returned by Saucy for d = 4 match the same patterns as for d = 3. This causes the same
six elements to be added to Candidatess. In addition, A1, B1 and E1 match the following
elements:

A1l matches IS[2,3,4] : x;3; > Xj4, Vi, € 1.N
B1 matches IS[1,3,4] : X3 <> x4j;,Vj,l € .N
E1 matches IS[3,3,4] : x;j3 > X4, Vi, j € I.N

Therefore, at the end of phase one Candidatess contains the original six elements plus the
above three new patterns.

The algorithm also analyses the instances d = 2 and d = 5, obtaining similar results. In
particular, at the end of phase one we have:

Candidates, = {DS[1,2],DS]2,3],IS[3, 1,2],DI[3] }

Candidatess = {DS[1,2],DS[2,3],IS[1,2,3],IS[2,2,3],IS[3, 1,2],IS[3,2,3]}
Candidatess = Candidates3 U {IS[1,3,4],IS[2,3,4],1S[3,3,4] }

Candidatess = Candidatess U{IS[1,4,5],1S[2,4,5],1S[3,4,5]}.

Since every symmetry in every generating set has been matched, no list of unmatched sym-
metries is printed for the user’s inspection. ]

In the following we will say that pattern f[Data] occurs in instance P[d] if the symmetry
group of P[d] contains at least one symmetry that matches f[Data]. Note that while all
parameterised permutations in Candidates,; must occur in P[d], there might be parameterised
permutations that occur in P[d] but do not appear in Candidates,.

4.2.2 Phase Two

While the elements in PermPatterns,; (and, therefore, those in the Candidates,; sets com-
puted by phase one) are patterns that give singleton parameterised permutations, we are also
interested in detecting parameterised sets of permutations. We introduce the following two
pattern constructors, IS and IT. Since these parameterised sets generate parameterised per-
mutation groups, we define them in terms of the occurrence in P[d] of the parameterised
permutations that generate the target group.

— All index swap (IS) in the k" dimension: IS[k] occurs in P[d] if there exists a path
between any two pairs of values in the k™" dimension, such that for each edge connecting
values v and V' in the path, IS[k,v,V] or IS[k,V',v] occurs in P[d].
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— All index projection (IT) of pattern p on dimension /: IT[l, p] occurs in P[d] if I1[l,a, p)
occurs in P[d] for every value a in 1..d;.

A pattern of the form IS[k] corresponds to a commonly occurring symmetry group in
constraint models. It represents a set of interchangeable values (if kK = n) or interchangeable
sequences of variables (if k < n), which often occurs as column (or row) interchangeabil-
ity [36]. For example, the pattern IS[3] represents the interchangeability of all values in the
Latin square model. We know that IS[3] occurs in LatinSquare[4] because the parameterised
permutations IS[3, 1,2], IS[3,2,3] and IS[3,3,4] (representing symmetries D, E and E1, re-
spectively) appear in Candidatess and, therefore, occur in LatinSquare[4]. Note that in order
for IS[3] to occur in LatinSquare[5] we need a new parameterised permutation (IS[3,4,5]) to
appear in Candidatess. In fact, for the generating set returned by Saucy, every Candidates,
needs to have at least one more pattern than Candidates, 1, making it difficult to express
the symmetry group. The IS pattern constructor allows us to capture this without the need
to mention explicit values.

A pattern of the form II[I, p] pattern corresponds to another commonly occurring sym-
metry group: that generated by several patterns II[/, v, p], one for each element v of dimen-
sion /. For example, consider a model with a matrix of variables where the variables of each
row can be interchanged, independently of the other rows. The literals form a matrix of three
dimensions; dimension 1 for the rows, dimension 2 for the columns, and dimension 3 for
the values. The symmetry can be represented by TT[1,IS[2]]; this indicates that IT[1,v,IS[2]],
which interchanges the columns only in row v, is present for every row. Again, if the number
of values of the first dimension varies with each d € Data, every Candidates,; would require
different elements in order to detect the parameterised group. The IT pattern unifies these
patterns across the different data values.

The p in II[l, p] will often be a non-singleton parameterised set of permutations itself.
In a group-theoretic sense, for a given instance if p generates parameterised permutation
group G and [ has n elements, then TI[/, p] corresponds to the direct product G". Similarly,
the combination of TT[/, p] and any other pattern that generates symmetry group H that acts
also on [ (such as DI[I] or IS[/]) represents the wreath product of G" and H.

Note that the singleton versions of pattern constructors DS and DI are sufficient; there
is no need for a parameterised set version. This is because they only have dimensions as
parameters and the number of dimensions is constant for all instances of a model. Therefore,
the relevant DS and DI patterns can appear in every Candidates, set (e.g. DS[1,2] and
DS|[2,3] in Latin square appear in all the Candidates, sets computed by phase one).

Phase two continues the construction process of a given Candidates; set by adding
parameterised set patterns to it. Our implementation, described by Algorithm 3, only adds
the following three kinds of patterns. First, it adds any IS[k] returned by INFER-TS(Candidates,),
i.e. any IS[k] whose occurrence in P[d] can be detected by the appearance in Candidates,
of the necessary IS[k,v,V'] elements. Second, it adds any IT[k,v,IS[{]] for which IS[/] is
in the set returned by INFER-IS(kvp), where kvp is the set containing all patterns p for
which IT[k,v, p] appears in Candidates,. In other words, any IT[k,v,IS[{]] for which the
Mk, v,IS[l,a,a’]] elements for all necessary a and @’ appear in kvp (and, thus, in Candidates,).
And third, it adds any IT[k, p] for which IT[k,v, p] appears in Candidates, for every value v
in dimension k.

Algorithm 3 is essentially a brute force search over all possible values for the IT and
IS patterns, and so finds all such patterns as long as their component patterns are found in
phase one.
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Example 16 Consider phase two of the algorithm for the Candidates; sets generated in Ex-
ample 15. For d = 2 the presence of IS[3, 1,2] in Candidates, causes INFER-IS(Candidatess)
to return R = {IS[3]} representing the interchangeability of all values in the Latin Square.
Therefore, ED] is added to Candidates;. Since Candidates, does not contain any projection
pattern, the algorithm moves to d = 3. For d = 3 the presence of IS[3, 1,2] and IS[3,2,3] in
Candidatess again causes IS|[3] to be added to Candidatess and, as before, the algorithm pro-
ceeds to d = 4. For d = 4, the presence of IS[3, 1,2], IS[3,2,3] and IS[3, 3,4] in Candidatess
again causes IS[3] to be added to Candidates, and the algorithm moves to d = 5. Similarly,
the presence of IS[3,1,2], IS[3,2,3], IS[3,3,4], and IS[3,4,5] in Candidatess causes IS|3]
to be added to Candidatess, and phase two finishes. O

Algorithm 3 Phase two of construction of Candidates,.
function INFER-IS(Matched)

R+ 0
forke l.ndo
S+ {1}

for v/ € 2..d; do
if 3v € S.(IS[k,v,V'] € Matched) then S + SU{V'}
end for
if S = 1..dj then R < RUIS[k|
end for
return R
end function

function PHASE-TWO(d, Candidates ;)
Candidates, < Candidates; UINFER-IS(Candidates,)
forkecl..ndo
forve l..d, do
let kvp = {p | I[k,v, p] € Candidates;}
S < INFER-IS(kvp)
Candidatesy < Candidatesy U{IIk,v,p] | p € S}

end for

end for

for p € Basicq U{ISk] | k € 1..n} do
fork e 1..ndo

if Vv € 1..dy.IT[k,v, p] € Candidates, then
Candidates, < Candidates, U {II[k,p]}
end if
end for
end for
return Candidatesy
end function

4.2.3 Properties of Step Two

Let us first discuss the complexity of step two. In phase one, matching a symmetry ¢ of in-
stance P[d] against a parameterised permutation requires at worst O(|liz(P[d])|) operations,
that is, linear in the number of literals in the instance. In practice, because the matching test
fails at the first literal whose image according to the parameterised permutation is different
from that obtained by ¢, most tested parameterised permutations can be discarded quickly.

The number of patterns to be tested grows with the number and sizes of the dimensions.
Let dj be the largest dimension size. Since there are O(n) DI patterns, O(nd?) IS patterns,
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and O(n?) DS patterns, we have |Basic,| = O(n(d; +n)). And since there are O(ndj|Basic,|)
IT patterns, we have |PermPatterns,| = O(|Basicy| + ndy|Basicq|) = O(n*dy(d} +n)).

In phase two, the function INFER-TS requires O(ndj) operations, assuming that the set
operations are done in constant time. Consider now the function PHASE-TWO, which has
three parts: the initial call to INFER-IS, the first nested loop, and the second nested loop.
The complexity of the initial call is O(ndy) and that of the first nested loop is O(n*d?). Both
are dominated by the cost of the second nested loop, which is O((|Basicy| +n) x ndy) =
O(n(d? +n)(ndy)) = O(n’di(d? +n)) = O(n*d} +n’dy).

Let us now discuss the expressive power of our patterns by considering how commonly
occurring symmetries are captured (or not) by our current implementation. Let us start with
value interchangeability. We can represent the interchangeability of either two values v and
Vv with v </ (IS[n,v,V']), or of all values (IS[n]). Note that, for those patterns, the values
need to be interchangeable for all variables in the matrix. We cannot represent interchange-
ability of any other set of values that depends on d,,, such as set {v |1 <v < (d,/2)}. We
would need a new pattern for capturing the 1 < v < (d,/2) relationship. Piecewise value
interchangeability [17] (that is, disjoint sets of interchangeable values) can be represented if
the values belong to different matrices, or if all values appear in all instances (through the
composition of the appropriate IS patterns).

Regarding variable interchangeability, IS[k, v,V'| for k < n allows us to capture (a gen-
eral version of) column and row permutation symmetries [36]. Further, we can represent the
interchangeability of either two variables x; and x; with i < j (IS[1, 4, j]), or of all variables
(IS[1]) if the matrix has only two dimensions. We can also represent the interchangeability
of a given subset of variables, if the subset corresponds to the variables represented by a
particular dimension k < n (E[k]). Piecewise variable interchangeability [17] (that is, dis-
joint sets of interchangeable variables) can be represented if each subset corresponds to a
different dimension (or different matrices), through the appropriate instantiations of the IS
pattern constructor.

In addition, we can represent inversions of either values or variables through instan-
tiations of the DI pattern constructor, and diagonal reflections of either variables or vari-
able/values through instantiations of the DS pattern constructor. Also, the IT pattern con-
structor allows us to represent symmetries that only apply to certain dimensions. For exam-
ple, it allows us to capture the interchangeability of all values for a given subset of variables,
if that subset corresponds to the variables represented by a particular value a of dimen-
sion [ (IT[l,a,IS[n,v,V']] and IT[l,a,IS[n]]). Furthermore, we can easily represent the direct
product of two symmetry groups through the composition of groups that apply to differ-
ent dimensions (such as IS[i] and IS[j], i # j), and the wreath product of symmetry groups
through the composition of a IT[l, p] pattern and a pattern that acts on / (such as IS[/] and
DI[7)).

Note that symmetries that require the simultaneous application of two or more patterns
will not be matched and, therefore, they will only be detected as part of the symmetry group
if all the instantiated patterns occur in all the instances. This is clear when considering, for
example, a model with 4 dimensions and symmetry O (X;,i,iyi;) = Xiyijisiz- This symmetry
does not match any pattern and, therefore, it is only detected as a symmetry of the model
if both DS[1,2] and DS[3,4] are parameterised model symmetries and are detected as can-
didates for all instances of the problem. While this is a significant limitation of our current
implementation, it considerably reduces the complexity of the detection algorithm.
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4.3 Step three: Filtering candidate symmetries

The aim of this step is to create a set Likely of patterns that are likely to be proved as
model symmetries in the final step. Algorithm 4 constructs this Likely set as follows. It first
adds to Likely, any element p of any candidates set, such that Vd € V, p occurs in every
instance P[d] either directly (p is a member of Candidates,), or indirectly (the permutation
group represented by p[d] belongs to the symmetry group of P[d]). The indirect check is
represented by expression p € Group(Candidates;) in the algorithm and performed using
the GAP system for computational group theory [33].

The above two checks exclude from Likely, candidates that do not occur in all instances
of the model. Further, the indirect check partly mitigates the problem of Saucy returning
arbitrary generating sets; with this check, candidates cannot be overlooked due to Saucy
producing generating sets of symmetries that match different patterns in different instances.

Once Likely, is computed, the algorithm disregards any element that is redundant due to
the addition of occluders, that is, patterns that subsume (or “occlude”) others:

occluders(IS[k,v,V']) = {IS[k]}
occluders(ITk,v, p)) = {I [k, p|y U{IT[k,v,p'] | p’ € occluders(p)}
occluders(DI[k]) = {IS[k]}
occluders(ITk, p]) = {II[k,p] | p' € occluders(p)}

Specifically, the algorithm removes from Likely, any p € Likely, such that occluders(p) C
Likely,. Note that the removal of occluded elements might result in a loss of accuracy if the
occluding symmetry group cannot be proved while the occluded element could.

Algorithm 4 Step three of the symmetry detection algorithm.

function OCCURS(d, p)
return p € Candidatesy \ p € Group(Candidatesy)
end function

function STEP-THREE(V,{Candidates; | d € V'})
Likelyy < 0
for p € U ey Candidates, do
if Yd € V OCCURS(d, p) then Likely, < Likely, U{p}
end for
Likely < Likely,
for p € Likely, do
if occluders(p) C Likely, then
Likely < Likely \ {p}
end if
end for
end function

Example 17 Recall that, for LatinSquare[N] and instance values d =2, d =3, d =4 and
d =5, the implementation returns the following sets after step two:

Candidates, = {DS[1,2],DS[2,3],IS[3, 1,2], IS[3], DI[3]}

Candidates; = (Candidates, \ {DI[3]}) U{IS[1,2,3],IS[2,2,3],IS[3,2,3]}
Candidates, = Candidatessz U {IS[1,3,4],1S|2,3,4],1S[3,3,4] }
Candidatess = Candidatess U {IS[1,4,5],1S[2,4,5],1S[3,4,5]}
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Elements DS[1,2],DS[2,3],1S[3,1,2],IS[3] appear in all candidate sets and are thus added
to Likely,. Element DI[3] only appears in Candidates, but occurs in all other instances (as
indicated by GAP). Thus, it is also added to Likely,. All other elements are of the form
IS[i, j,k] and do not occur in LatinSquare[2] (since k is outside the range of dimension i).
Thus, Likely is initially computed as {DI[3],DS[1,2],DS[2,3],IS[3, 1,2],IS[3]}. Then, DI[3]

and IS[3, 1,2] are eliminated from it, since they are occluded by IS[3]. O

4.4 Step four: Proving model symmetries

The final step of our method checks whether the patterns returned in the set Likely by step
three are model symmetries, i.e. whether, in every instance of the model, they map to sets
whose elements are symmetries. The fourth step is vital if the symmetries are to be later used
by symmetry breaking techniques to make the search more efficient, for if the permutations
are not symmetries then the search may fail to find some solutions.

Proving that a candidate parameterised permutation is indeed a model symmetry can be
achieved, for example, by first representing both the model and the candidate parameterised
permutation in the logic formalism described by Mancini and Cadoli [18], and then making
use of theorem proving techniques. Of course, such a technique is in general undecidable
and requires the user to find an equivalent logical expression for their constraint model. In
this sense, such an approach is not truly automatic.

An alternative approach to proving the existence of a symmetry on a model is to show
that the symmetry, when applied to the model, leaves the model itself unchanged. In other
words, a model M is transformed into a new model f(M), by applying the symmetry f to
every constraint in M. If f(M) can be shown to be equivalent to M, then the symmetry f is a
model symmetry. This approach has been described and implemented by Mears et al. [24],
who show that it can be applied successfully for various kinds of symmetry. The approach
involves applying a parameterised permutation to the constraints of a MiniZinc model M
obtaining a new model M’, and then normalising the constraints of both M and M’ in such a
way that each constraint in M is syntactically identical (up to Presburger arithmetic) to one
in M’

Example 18 Of the likely candidates found for the Latin square problem (Example 17), the
proof technique in [24] can prove that the DS][1,2] candidate is a model symmetry and that
the elements of IS[3] are model symmetries, but is unable to prove that the DS[2, 3] candidate
is also a model symmetry. a

Given an approach to verify the occurrence in every instantiation of the parameterised
permutations, one may ask whether we could bypass step 2 and simply mark as a likely
candidate every instantiation of a pattern that GAP confirmed as occurring. While this is
indeed possible, one would end up marking as likely candidates not only the generating
set of the symmetry group but also all other instantiations of the pattern constructors. This
has two main disadvantages. First, one would have to prove many more likely candidates.
And second, many redundant symmetries may be found, which might slow down the search
for solutions for the instances of the problem, since the performance of symmetry breaking
approaches is often reduced when dealing with many symmetries.
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5 Limitations of the Method

Clearly, the way in which the model is specified naturally affects the effectiveness of the
method. For example, a model symmetry must occur in every instance of the model and,
therefore, must be determined by information explicitly represented in the model itself. A
more complex Data parameter may lead to fewer model symmetries and more instance-
specific symmetries. Also, specifying only some parameters — restricting a model to an-
other more specific model — may cause new model symmetries to emerge.

Theoretically, the method is not affected by the particular choice of constraints used in
the model, since it can be implemented using a complete instance-based detection method
that does not depend on this. However, complete instance-based methods tend to be compu-
tationally expensive, even for small instances. Even so, it is more likely for our method
to be less dependent on the choice of constraints than other model symmetry detection
approaches, since it can use information from the instance to reduce its dependence. For
example, while our method can be implemented using complete instance symmetry detec-
tion methods (e.g. [5]), the instance-based detection method that we chose (full assignments
graph [21]) makes the resulting model method less affected by the constraint syntax used in
the model than previous approaches, since it does not require the use of global constraints
and can cope with some degree of syntax variation.

The method is sensitive, however, to the way in which variables are specified in the
model, since they determine the way in which the structure of the problem is represented
(i.e. its dimensions and index values). This structure is the basis to define the patterns, and
some structures might make it easier to detect patterns than others.

Example 19 The variable symmetries given in Example 2 that swap a pair of columns of
LatinSquare[N] can easily be recognised because the tuple of indices that identify each vari-
able in the model contains an index j corresponding to each column. Similarly, row symme-
tries are recognisable because there is an index i corresponding to each row. The situation
is different in a model where each variable is uniquely identified by a single index ranging
from 1..N%:

X[N]:N~— {x;|i€1.N?}

DIN]:N— 1.N

CIN]:Nw—  {x;#xj|i,j€1.N*> wherei < jA((i—1) mod N) = ((j— 1) mod N)}U
{xi#xj|i,j€1.N> where i < jA((i—1)divN) = ((j—1) divN)}

This model is less intuitive and the symmetries are correspondingly more difficult to express.
Consider, for example, the “swap rows 2 and 3” variable symmetry. This is represented in
the original model as (x31,...,xon) <> (x31,...,x3y5) (Which corresponds to IS[1,2,3]), and
in the above model as (xy1,...,Xon) <> (XaN41,...,X3x), arguably a less intuitive form.

O

Different choices of variable names also lead to different models and, thus, to different
structures.

Example 20 Consider the Golomb ruler problem and the associated model introduced in
Example 9. A different model could have been constructed with a single set of variables:

X[N:N— {d,]acl.N—1}
DIN]: N~ {1.N?}
CIN:Nw= {Yicacjda # Yhca<ida | 1 J, kL € LNNI< jAK<IN(i# KV j#1)}
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The values of the marks on the ruler are the cumulative sums of the d, variables; the n™
mark is equal to Zf,v;]l d,. The literals in every instance of the above model can be arranged
into a single matrix named d, where literals are uniquely identified by the name d and the
(i, ) tuple, where i € 1..N — 1, j € 1..N?. Therefore, Dims(N) = (d(N — 1,N?)). This model
has different symmetry detection opportunities to those of Example 9: the symmetry that
reflects the differences now acts only on the d, variables, affects a single dimension and
matches the DI[1] pattern. O

In summary, our method can miss model properties if the choice of variable specifica-
tion, be it its variable name or its associated indices, does not reflect the structure of the
property we are trying to detect.

6 Detailed Examples

We have discussed how our implementation works with the Latin square example. Here we
illustrate this further with three detailed examples: N-queens and Social Golfers, for which
our method detects all model symmetries as likely candidates; and Golomb ruler, for which
it fails to detect any likely candidate.

6.1 N-queens

The N-queens problem is to position N queens on an N X N chess board without attacking
each other. The following NQueens[N] model uses N integer variables ¢g; where g; = j if the
queen in column 7 appears in row j.
X[N]:N > {gi|i€1.N}
DIN]:N— 1.N
CIN]:Nw {qi#qjli€l.N,jei+1.N}U

{gi+i#q;+jli€cl.N,jci+1.N}U

{gi—i#qj—jli€c.N,jei+1.N}

The g; # g, constraint ensures that no two queens share a row, while the other two
constraints ensure that no two queens share a diagonal in either direction (rising or falling).
The literals in every instance of the model can be arranged into a single 2-dimensional matrix
with Dims(N) = (q(N,N)), where each literal ¢; = j is uniquely identified as q;;. During the
first step of the analysis, and given an initial user-defined value N = 8, the implementation
generates the full assignment graphs for N =8, N =9,N = 10 and N = 11 and uses Saucy to
compute the generating sets of the symmetry group of each graph. Figure 5 shows the graph
for N = 8, with the elements of its generating set marked as bold arrows. Again, each vertex
in the graph represents a literal q;; where the q has been omitted for clarity. Each edge,
shown as a thin black line, indicates that the two literals at the end-points are incompatible.

For N = 8 Saucy returns Generatingg = {A,B} where:

A (q11,912,913,914,921,922, 923,924, - - - , 481,982, A83, q84) <>
(418,917,916,915, 928,927, 926,925, - - - , 488, 487 U6 483)

B (q12,413,914,4915, 916,917,418, 923, 424, 925, 426, 927, 428, - - -, q78)
(d21,931,941,951,961,971, 981,932, 942,952, G625 472, 4825 - - - , 487)

Symmetry A maps each value j in the second dimension to N — j+ 1. This is the reflec-
tion of the chessboard around the central horizontal axis. Symmetry B swaps the variable
and value dimensions. This is the reflection of the chessboard around the main diagonal
axis. During phase one of the second step of the analysis, these symmetries are automati-
cally matched to the following patterns:
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Fig. 5 Full assignments graph of instance NQueens[8]

A matches DI[2]:  q;j = qi(y—j41)Vi,j € L..N
B matches DS[1,2]: q;;j+— q;;,Vi,j € 1.N

No extra patterns are found during phase two and, therefore, Candidatess = {D1[2],DS[1,2]}.
For N =9 Saucy returns Generatingg = {A1,B1} where:

Al (qi1,912,913, 914,921,922, 923, Q24 - - -, 491,492, 93, Qo4 <>
(419,918,917, 916,929, 428,927, 426> - - - ; 499, 498, 497, 496

B1 (q12,913,414,915, 916,917,918, 419, 923, 424, 425, 426,927, 428 429, - - - , 489) >
(Q21,931, 941,951, 961,971,481, 991, 432, 942, 452, 462, 472, 482, 4925 - - -, 498)

Note that B1 is an extension of symmetry B found for NQueens[8] that matches the same
pattern DS[1,2], and A1 is a new symmetry that can be matched to the same pattern (DI[2])
as A. Since again no extra patterns are found during phase two of the second step of the
analysis, Candidatesy = Candidatess = {DI[2],DS[1,2]}.

The candidate sets found for N = 10 and N = 11 are, however, different because Saucy
returns different generating sets. In both instances, one of the elements of the generating set
does not match any of our patterns, resulting in Candidates)o = {DI[2]} and Candidates;| =
{DI[1], DI[2)}.

In phase three, the algorithm checks the elements in |,y Candidates; = {DI[1],DI[2],
DS[1,2]} to see whether they occur in every instance’s symmetry group. For DI[2] this
test is trivial because it is found in every Candidates, set and, thus, it is added to Likely,,.
The other two patterns require using GAP to test for membership in the symmetry group
of each instance. Since both DI[1] and DS[1,2] are found to be members of these groups,
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Likely, = {DI[1],DI[2],DS[1,2]}. Finally, since none of these elements is occluded by the
others, Likely is the same as Likely,.

These three patterns together generate all symmetries of the problem. All three can be
proved by the approach of [24] to be model symmetries.

6.2 Social Golfers

The Social Golfers problem is to build a schedule of W weeks, with G equally-sized groups
per week, and N golf players per group, such that each pair of players may play in the same
group at most once. The following Golf[W, G, N] model uses W * G set variables p,,, where
Dwg Tepresents the set of players that play in group g during week w:

X[W,G,N|:WXxGxNw— {py|wel.Wgel.G}
DIW,G,N]:WxGxN— o(1..(NxG))
CW,G,N|:WxGXxNw— {|pw|=N|wel.W,gel.G}U
{|ng1 mngzl =0[wel.Wg,g€l.Gg <glu
{|pw1gl mpwzgz‘ <1 ‘W],Wz € 1.W,w; <wp,g1,8 € 1..G}

where & denotes the powerset. The first constraint ensures the groups are equally-sized, the
second that players play in a single group each week, and the last that each pair of play-
ers play in the same group (across the weeks) at most once. The literals in every instance
of the model can be arranged into a single 3-dimensional matrix with Dims(W,G,N) =
(p(W,G,N xG)), where each literal p,,, = k is uniquely identified as p,,g. For set variables,
the full assignments graph uses an alternative Boolean representation, where a node is cre-
ated for every possible value a in the set variable x, plus an extra node for a dummy value
representing the empty set. Then, literal x = a represents that value a appears in the set
assigned to variable x. Therefore, for Social Golfers, a literal identified by p,,,. represents
X € Py, i.e. that player x is in group g of week w. The dummy value is 0, e.g. p;1o represents
the literal p;; = 0.*

As mentioned in Example 12, during the first step of the analysis, and given the initial
base tuple (2,2,2), the implementation generates graphs for seven values of d: (2,2,2),
(3,2,2),(4,2,2),(2,2,2),(2,3,2), (2,4,2),(2,2,2), (2,2,3), and (2,2,4). For tuple (2,2,2)
Saucy returns the set Generating(, , 5y = {A,B,C,D,E,F} where:

P113,P123,P213,P223) < (P114,P124, P214, P224)
p1127P1227p21271)222> A4 <p1137P1237p213,pzz3>
Pi11,P121,P211,P221) < (P112,P122, P212, P222)
P110,P111,P112,P113,P114) <> (P120,P121,P122,P123, P124)
(P210,P211,P212,P213,P214) <> (P220,P221,P222, P223, P224)
(P110,P111,P112,P113,P114,P120, P121, P122, P123, P124) ¢
(P210,P211,P212: P213, P214, P2205 P221, P222, P223, P224)

TEHO QR

Symmetries A, B and C state that players 3 and 4 can be swapped, and so can 2 and 3,
and 1 and 2, respectively. Symmetries D and E state that groups 1 and 2 can be swapped
within week 1 and within week 2, respectively. Finally, symmetry F states that weeks 1 and

2 can be swapped.
In phase one of the second step of the analysis, these symmetries are matched to the
following patterns:

4 The dummy value is required for the instance symmetry detection method; without it, a literal with the
value of empty set would have no edges in the symmetry detection graph and would not appear to participate
in any constraint.
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A matches IS[3,3,4]: pij3 < Pija,Vie LW, jel..G

B matches IS[3,2,3]: pij2 < pij3,Vice L.W,jel.G

C matches IS[3,1,2]: piji < pijp,VielL.W, jel.G

D matches IT[1,1,IS[2,1,2]]: p1ix ¢ P12k, Yk € 1.N x G

E matches H[IZ.HS[2,12” P21k <> P2k, Vk € 1.N X G

F matches IS[1, 1,2]: Pijk < P2j,Vj€1.Gke LNXG

Since for tuple (2,2,2) the first two dimensions have only two values, any symmetry that
matches an IS pattern on dimension 1 or 2 also matches a DI pattern on the same dimension.
Thus, D, E and F also match IT[1, 1,DI[2]], II[1,2,DI[2]] and DI[1], respectively. We will
call this a redundant DI match. As a result, at the end of phase one Candidates(272_2> is de-
fined as {IS[1,1,2],DI[1],IS[3,1,2], IS[3,2,3],IS[3,3,4], I1[1, 1,IS[2,1,2]], II[1,1,DI]2]],
I[1,2,IS[2,1,2]],I1]1,2,DI[2]] }.

In phase two, the patterns matched for A, B and C are used to add EB] to Candidates(z’zﬁz),
stating that all players are interchangeable. The pattern IS[1, 1,2] matched for F causes the
addition of IS[1], which states that all weeks are interchangeable. The patterns IT[1,1,IS[2,1,2]]
and IT[1,2,TS[2,1,2]], matched for D and E respectively, each cause the addition of IT[1, 1,IS[2]]
and IT[1,2,TS[2]]. And these two projections cause IT[1,IS[2]] to be added, stating the inter-
changeability of groups within each week. Therefore, at the end of phase two IS[1],IS[3],
I[1,1,IS[2]], IT[1,2,IS[2]] and TI[1,IS[2]] are added to Candidates , ,).

The generating sets for the other instances Golf[3,2,2], Golf[4,2,2], Golf[2,3,2],
Golf[2,2,3], Golf[2,4,2] and Golf[2,2,4] include the extended versions of symmetries A
to F above (with identical matches except for the lack of redundant DI[2] patterns for
Golf[2,3,2] and Golf[2,4,2)), plus additional symmetries representing the interchangeabil-
ity of the extra weeks, extra players, and extra groups. These additional symmetries allow
the implementation to detect the same extra patterns as before. For example, at the end of
phase two, Candidates, 35y = {IS[1, 1,2], DI[1],1S[3, 1,2],1S[3,2,3],1S[3,3,4], IS[3,4, 5],
IS[3,5,6],I[1,1,1S[2,1,2]], [T[1,1,IS[2,2,3]], [T[1,2,1S[2, 1,2]], I1[1,2,1S[2,2, 3]],IS[1],
IS[3],[1,1,IS[2]], I[1,2,IS[2]], II[1,IS[2]]}.

During step three, all patterns of the form IS[1, _,_] or IS[3,, ] that pass the OCCURS
check are eliminated since they are occluded by IS[1] and IS[3], respectively. Similarly, all
patterns of the form IT[1,1,IS[2, _, ]] or IT[1,2,IS[2, _, ]] are eliminated due to IT[1,1,IS[2]]
and IT[1,2,TS|2]], respectively. Finally, all patterns of the form IT[1,1,IS[2]] or IT[1,2,IS[2]]
are eliminated due to TT[1,IS[2]]. As a result, the implementation leaves in Likely the fol-
lowing patterns, which form all the actual symmetries of the problem:

II[1,IS]2]]: the groups of players are interchangeable within each week (from symme-
tries D, E).

IS[3]: the players are interchangeable (from A,B,C).

IS[1]: the weeks are interchangeable (from F and GAP consultation for Golf[3,2,2] and
Golf[4,2,2)).

The two IS likely candidates can be proved by the approach of [24], while the other
cannot. However, it can prove IS[2], which is a subgroup of the symmetries represented by
the detected IT[1,IS[2]] element.

This problem is an example of how a combination of patterns can capture a wreath prod-
uct. In this case, it is the wreath product of the symmetry within each each week (IT[1,IS[2]])
and the symmetry on the weeks themselves (IS[1]).
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6.3 Golomb ruler

This problem and its model Golomb[N] are described in Example 9, and has Dims(N) =
(m(N,N*+1),d (M,Nz)% with each literal m; = j and d; = j being uniquely identified
as m;; and d;;, respectively. The generating set found by Saucy for graph Golomb|3] is:

A (dy;,dp2,d3,d14,d;5,d16,dy7,dig,dig) <
(d31,d32,d33,d34,d3s,d36,d37,d38,d3g) plus
(myg,myj,mi,my3, My, M5, My, M7,...,My) <
(m39,m3g, M37,M36, M35, M34,M33, M3, . .., Mps5)

which reflects the lengths of the spaces between the marks, i.e. turns the ruler back-to-front.
This symmetry involves variables from two separate matrices, d and m, and our simple im-
plementation cannot yet handle this. But even if we only consider the literals in the m matrix,
the implementation would need to match the symmetry to the parameterised permutation
m;, — My w2y Withi € 1.N,v e 0..N?, which performs two different reflections in
two different dimensions, something our implementation does not currently detect (unless
each of the two reflections is itself a symmetry of the problem, as it will then be obtained by
composing the two). Therefore, this model symmetry is not detected. As shown in Exam-
ple 20, one could provide a different model where the symmetry can indeed be detected by
our implementation. However, we believe such model is less natural and, thus, less common.

7 Results

This section evaluates the accuracy and practicality of our implementation of the symmetry
detection method described in Section 4. The evaluation is performed over a set of prob-
lems that includes those discussed earlier, plus the following problems (some of which are
described in CSPLib [15]). The MiniZinc models used for these problems will be avail-
able on the Constraints journal’s editor’s page (currently http://www.crt.umontreal.ca/
~pesant/Constraints/constraints.html).

Balanced Incomplete Block Design (CSPLib problem 28): with parameters (v,b,k,r,A),
where the task is to arrange v objects into b blocks such that each block has exactly k objects,
each object is in exactly r blocks, and every pair of objects occurs together in A blocks. The
model has a v X b matrix of Boolean variables, where variable x;; is true if and only if object
i is included in block j. Thus, Dims((v,b,k,r,A)) = (x(v,b,2)). Note that parameters b and
r can be derived from the other three and so we specify only (v,k,A) in Table 1. The objects
are interchangeable [IS[1]], as shown in the table, and the blocks are interchangeable [IS[2]].
Graceful Graph (general): with a graph G = (V,E) as a parameter, where the task is to
label each vertex in V with a different value between 0 and |E|. Also, each edge (u,v) has
an induced label |u — v|, and all edges must have different labels. The model has a variable
for each vertex. Thus, Dims((V,E)) = (x(|V|,|E| + 1)). The only model symmetry is that
the values are reversible, which matches DI[2].

Graceful Graph (K, x Py,): the same problem as the previous one, but for a particular
kind of graph: the Cartesian product of K, (complete graph of n vertices) and P, (a path of m
vertices). The model uses an n X m matrix of variables for the vertices, such that each column
corresponds to a single K. Thus, Dims((n,m)) = (X(n,m, w +n(m—1)+1)). In this
version of the problem, there are additional symmetries thanks to the structure of the graph:
the corresponding vertices in each clique (dimension 1) are simultaneously interchangeable
[IS[1]] and the order of the cliques (dimension 2) is reversible [DI[2]].
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(N x N) queens (not to be confused with N-queens): where an N x N chessboard is coloured
with N colours, so that a pair of queens placed on any two squares of the same colour would
not attack each other. The model uses an N x N matrix of integer variables, where the values
(colours) range from 1..N. Thus, Dims(N) = (x(N,N,N)). The symmetries are those of the
chessboard (variable rotations and reflections) [DI[1],DS[1,2]], and the colours (values) are
interchangeable [IS[3]].

N-queens (bool): the same problem as described in Section 6, but using an N x N matrix of
Boolean variables for the model. Each variable x;; is true if there is a queen in the square at
row i, column j. Thus, Dims(N) = (x(N,N,2)). The symmetries are those of the chessboard
(variable rotations and reflections) [DI[1],DS[1, 2]].

Steiner Triples (CSPLib problem 44): where the task is to find m = ”("—gl) triples of distinct
integers from 1 to n, such that any pair of triples has at most one element in common. The
model uses an array of m set variables, where the elements of each set are drawn from
1..n. Thus, Dims(n) = (x("%—*l),n)). The symmetries are that the triples (variables) are
interchangeable [IS[1]] and the values are interchangeable [IS[2]].

Steel Mill Slab Design (CSPLib problem 38): where a set of orders, each having a weight
and a colour, are to be assigned to slabs. The orders assigned to a single slab may have up
to two different colours. Each slab has a size chosen from a fixed set; the total weight of
the orders must not exceed the slab’s size. Any unused slab capacity is to be minimised.
The model uses an array of n integer variables, where n is the number of orders. The value
of each variable is the slab to which that order is assigned. While in this case an element
d of Data is not a simple integer tuple, we can still define Dims(d) = (x(n,s)), where n is
the number of orders and s is the number of slabs. The slabs (values) are interchangeable
[IS[2]1.

Scene Allocation: where movie scenes are to be scheduled to minimise actors’ fees [35].
Each scene requires a subset of the actors and at most five scenes may be shot per day. Each
actor has a fixed daily fee payable for every day in which one of their scenes is scheduled,
but there is no penalty for having an actor work non-consecutive days. The model uses an
array of n integer variables, where 7 is the number of scenes, and the value of each variable
is the day on which that scene is scheduled. Again, while an element d of Data is a complex
data tuple, we can still define Dims(d) = (x(n,m)), where n is the number of scenes and m
is the number of days. The days (values) are interchangeable [IS[2]].

HP 2D-Protein Folding [18, 16]: where a sequence of amino acids is to be laid out on a 2D
grid that minimises the energy of the resulting structure. Each amino acid is labeled either H
or P, and the aim is to maximise the number of pairs of H amino acids that are adjacent. The
sequence must not overlap itself. We use a model similar to that of Mancini and Cadoli [18],
where the value of decision variable x; (corresponding to amino acid i in the sequence) is
the direction north, south, east or west w.r.t. x;_. Since an element d of Data is a sequence
of H or P elements, we can define Dims(d) = (x(n,4)), where n is the number of amino
acids. The symmetries are those of the 2D grid, that is, value symmetries that reflect the
plane [IS[2,1,3], IS[2,2,4]] and a value symmetry that rotates the plane (and which does
not match any pattern).

Table 1 shows the results of the evaluation, where the columns indicate the problem
name, the base tuple (if any) used for generating the instances and the maximal amount by
which each component in the base tuple is increased, the symmetries of a known generating
set with their associated patterns in brackets (if any matching pattern exists), whether the
pattern appears in Likely (“v"”) or not (“-”) , whether it is proven by the implementation of
[24] (“P”) or not (“-”), the total analysis time in seconds, and the percentage of the total
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Table 1 Symmetry detection results.

Problem Base + Inc. Symmetries Time | Inst. Graph
(s) Det. V/E
BIBD 2.22)+2 objects [IS[1]] P | 10 | 86 | 5760/
blocks [IS[2]]  v'P 56448
Social Golfers (2,2,2)+2 weeks [IS[1]]  vP | 72.8 100 | 542768/
groups [TI[1,IS2]]] v~ 3829496
players [IS[3]] vP
Golomb Ruler (3)+3 flip -- 32 96 40293/
88467
Graceful Graph 2,2)+3 intra-clique [IS[1]] vP | 5.8 57 72580/
(Kn X Py) path-reverse [DI[2]]  v'- 157690
value [DI[3]] VP
Latin Square 2)+3 rows/columns [DS[1,2]] VP 0.1 27 875/
columns/values [DS[2,3]] v/~ 1500
value [IS[3]] VP
N x N queens (4)+3 chessboard [DI[1],DS[1,2]] VP 0.3 57 4704/
colours [IS[3]] v'P 8722
N-queens (int) (8)+3 chessboard [DI[1],DS[1,2]] VP 0.2 17 2101/
3960
N-queens (bool) (8)+3 chessboard [DI[1].DS[1,2]] vP | 0.7 54 977/
5400
Steiner Triples 4)+3 triples [IS[1]] VP 0.4 54 2786/
value [IS2]]  vP 8281
Scene Allocation (H+1 days [IS[2]] v- 0.3 19 1386/
8664
Steel Mill (D+1 slabs [IS[2]] VP | 46 | 99 | 26255/
114062
Graceful Graph (H+1 value [DI2]] V- 14.3 87 80355/
(general) 172040
Protein Folding (1)+1 horiz. reflection [IS[2,1,3]] V- 2.6 95 35448/
vert. reflection [IS[2,2,4]] - 81033
rotation - -

analysis time that is spent in detecting instance symmetries. The final column lists the size
(vertices/edges) of the full assignments graph — which is used to find instance symmetries
— of the largest instance for each model. Note that for the last four benchmarks in the table,
where the parameters cannot be automatically generated, we created data that resulted in
several small instances. For these four benchmarks, the base and increment values refer
to the instance identifiers rather than the actual instance data. The experiments were run
using MiniZinc version 1.5 on an Intel Core 2 3.33GHz computer with 4GB of memory. No
effort has been made to optimise detection time; the times are included simply to show the
practicality of the approach.

The results show that the approach is capable of finding almost all symmetries in this
set of problems. The constraints used in each problem vary, from many simple constraints
to global constraints. In particular, all symmetries are found in the two quite different rep-
resentations of the N-queens problem. Note that the system correctly added to Likely all but
two members of a generating set, even though the instances used were very small. In the
Social Golfers and BIBD problems, where the detection time is largest, most of the time
is spent in detecting instance symmetries. For the Latin square problem, the symmetry be-
tween columns and values cannot be proved for this model, although it can be proved for a
different model with Boolean variables instead of integer variables.
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8 Detecting Other Properties

Our method for detecting symmetries can be generalised to other properties as follows:

1. For each d € V, detect the set of properties Properties, of instance P[d].

2. For each d € V, lift each p € Properties,; to the model, obtaining the set of candidate
model properties Candidates,.

3. Create a subset Likely of (J,cy Candidates, containing only those elements that are
likely to be model properties.

4. Prove whether the elements of Likely are indeed model properties or not.

In the next subsection we show how the above generalised method can be used to detect
conditions under which two subproblems are known to be equivalent. This information can
be used by a caching search to significantly speed up the execution [31, 12]. See [22] for an
actual implementation of this application of the generalised method. Note that determining
whether such conditions occur in a model is a difficult problem for which there is no other
automatic method, although a method does exist for instances [4].

8.1 Applying the Generalised Method to Caching

Caching modifies a search algorithm by storing the results of exploring some subtrees and
reusing them wherever possible. A subtree g does not need to be explored if a previously
explored subtree p is known to contain all the information that might be found in ¢; that is,
any solution found in ¢ is equivalent to a solution in p (and vice versa). If this is the case,
we say that p and ¢ are equivalent.

Example 21 Consider the CSP (X,D,C) where X = {a,b,c,d}, D(a) =1..3, D(b) = 1..4,
D(c) =1..5,D(d) = 1..6 and the only constraint is a + b+ c +d = 10 (see Figure 6). The
search may proceed by asserting a = 1 and b = 4, leading to a subtree 7. In this subtree
there is the subproblem induced by the earlier assignments where ¢ 4+ d must be made to
equal 5. Later in the search, the initial decisions may be undone and instead the search may
try a =2 and b = 3, leading to a subtree 7;. The two subtrees 77 and 7> are equivalent,
because every assignment over the variables {c,d} that leads to a solution in 7} also leads
to a solution in 7> (and vice versa). Therefore, we can cache the solutions for 77 and reuse
them for 7.

Fig. 6 Part of a search tree showing equivalent subtrees 77 and 7.
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The proposed generalised method is modified to detect equivalent subproblems as fol-
lows. In the first step, we construct the search tree resulting from solving each initial in-
stance. This task corresponds to the generation of the full-assignment graph for detecting
symmetries. Then, we transform the tree into a directed acyclic graph, where identical sub-
trees are merged and, thus, easily identified. This task corresponds to calling Saucy to detect
automorphisms of the graph. In the second step, we match each of a set of patterns with the
information contained in every merged node. Patterns include permutations of the values of
already assigned variables, domain of unassigned variables, and subsets of remaining con-
straints. In the third step, we eliminate from the candidate patterns every one that applies to
two non-merged nodes in the graph. The fourth step attempts to prove that each likely can-
didate applies to the model. This last step is currently done manually. As shown in [22], the
method successfully detects all known candidates in a reasonably wide set of benchmarks.

8.2 Limitations of the Generalised Method

Our generalised method is suitable for the detection of properties for which good patterns
can be defined. We say a pattern is good if it directly depends on the structure of the in-
stance (i.e. the relationships established by the constraints on its variables and values) and
can be easily checked. For example, the generalised method can be applied to finding im-
plied global constraints. In this case the patterns are the global constraints themselves (rep-
resented, for example, as their associated full assignment graphs) and the structure of the
instance is also the constraint graph. The pattern occurs in the instance if the global con-
straint appears as a sub-graph of the instance’s graph.

Theoretically, the generalised method is not affected by the particular choice of con-
straints used in the model, since it can be implemented using a complete instance-based
detection method that does not depend on this. In practice, however, this might be impracti-
cal. The generalised method is sensitive, however, to the way in which variables are specified
in the model, since they determine the way in which the structure of the problem is repre-
sented. This structure is the basis to define the patterns, and some structures might make it
easier to detect properties than others

9 Related Work

There are three areas of research related to this paper. Firstly, there is a body of work on
static analysis to prove properties of programs (symmetry being just one such property).
Secondly, there is a smaller body of literature on the discovery of properties of problem
models from sets of their instances. And thirdly, there is a substantial amount of research
literature on symmetry detection. We discuss each of these in turn.

9.1 Static Program Analysis

Static program analysis is the process of inferring information at compile-time about the
run-time properties of the program. Abstract interpretation [7], one of the most popular
static analysis approaches, works by abstracting the data to encode the property of interest,
abstracting the operations on the data, and then running the program using these abstractions.
Abstract interpretation has been successfully applied to a wide variety of programs and
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programming paradigms (see for example, [1, 37], and previous editions of the same events),
including Constraint Logic Programs (e.g. [13, 28, 19]).

Since the program inputs are only supplied at runtime, static analysis is data-independent
and, in this sense, it is similar to the inference of properties of CSP models. Unfortunately,
for many properties the conjunction of constraints and the domain of the variables have a
complex effect on the presence or absence of the properties. Therefore, the abstract con-
junction operation will lose considerably accuracy. This is indeed the case when inferring
symmetries (see Section 9.3 for an example of the rapid loss of accuracy when static anal-
ysis is applied to CSP models). Our method avoids this loss of accuracy by using concrete
(rather than abstract) data to infer its information.

9.2 From Properties of Instances to Properties of Models

The machine learning community has for many years used information learnt about in-
stances of a model (or class) to infer information likely to hold for new instances of the
model. This type of inductive inference has been used for algorithm selection [32], among
other purposes.

Inductive reasoning from a set of problem instances was also proposed in [3] where a
theorem prover generates additional constraints for each instance, and it is conjectured that
constraints that hold for all the instances in the set tested so far, hold for all instances of
the problem model. A theorem prover is then used to attempt to prove that the additional
constraint holds not just for specific problem instances, but for the problem model itself.
The HR theorem prover used in [3] requires the problem model to be axiomatised as a
“basic model” in first-order logic. Any first order formula has a fixed number of variables.
Moreover any constraint has a fixed arity, of course. Consequently, the basic model cannot
use a representation where the number of variables in the model and in the scope of a global
constraint depends on a parameter. Such a representation is required for both the definition
and the recognition of model symmetries. Moreover, the basic model for the HR theorem
prover is independent of the size of any problem instance, so no property that involves the
size of the instance (or one of its dimensions — as in symmetry pattern DI) — could be derived
as a possible theorem.

Colton and Sorge [6] investigate a method for distinguishing all finite algebras of a
given size by eliciting a minimal set of element-type properties sufficient to separate each
pair of instances. An element-type property is a property of an element, independent of the
size of the algebra. Consequently, it is possible for the same set of element-type properties
to distinguish instances of algebras of different sizes. An aim is to find minimal sets of
element-properties sufficient to distinguish all finite algebras of size up to a given maximum
size. Our research also focuses on model properties which are independent of the size of the
instance, though our properties are not element-type and the class of models we address is
wider.

9.3 Symmetry Detection

Van Hentenryck et al. [36] propose to define the symmetries of individual constraints, and
then combine these symmetries to obtain the symmetries of the model. To achieve this, they
first define the composition of two CSPs as follows:
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Definition 3 Let P, = (X;,D1,C;) and P, = (X2,D2,C>) be two CSPs. Then, their com-
position Py A P, is (X1 UXa,D3,C1 A Cy) where Ds is the intersection of their associated
domains.

The key observation that allows some symmetries to be derived by composition is the
following (proposition 1 in [36]):

A value-interchangeable CSP is a CSP where all values are interchangeable. Let
P, = (X,D,C}) and P, = (X,D,C;) be two value-interchangeable CSPs. Then, P; A
P, is value-interchangeable.

Although the above proposition is defined only for the case in which all values are in-
terchangeable, similar results apply for interchangeable variables, and also when only some
values (or variables) of the problem are interchangeable [36]. This approach can detect sets
of values (or variables) that are interchangeable, and can be extended to row- and column-
interchangeability for matrices of variables. It is, however, unable to capture other kinds of
symmetry, such as reflections of a matrix or variable-value symmetries.

Another serious limitation is that symmetries are not inherently compositional. Two
subproblems P; and P> may have no symmetry when considered independently, yet P; A
P, may contain symmetries. This kind of symmetry cannot be captured by compositional
derivation. For example, in the two subproblems (a) x; < x; and (b) xo < x1, x1 and x, are
not interchangeable, yet in the composed problem x; and x; are interchangeable.

Furthermore, symmetries may exist in subproblems but be lost upon composition. For
example, the three subproblems (a) x; # x»; (b) x| # x3; and (c) x, # x3, each have a symme-
try that interchanges its variables, and the problem formed by conjoining these subproblems
also has those symmetries. However, the symmetries in each problem are different and,
therefore, taking their intersection yields no symmetries.

Given the weakness of the proposition above (which requires the variables and domains
of P; and P, to be the same), one could think that a formulation of the model in terms of
global constraints would be advantageous. However, often this is not enough. For example,
formulating the N-queens problem exclusively in terms of global alldiff constraints does
not enable its symmetries to be detected using the method in [36] because the three alldiff
constraints in N-queens do not share the same variables (and, thus, symmetry). Further,
global constraints may not be available in the modelling language or constraint solver used,
the problem may be more easily expressed without them, or the modeler may not have the
necessary expertise to use them. Lastly, it is difficult to asses the practicality of their method
since, as far as we know, there is no implementation.

The method of Roy and Pachet [30] uses the symmetries of global constraints to auto-
matically detect symmetries in problem instances. Every constraint divides its variables into
intensional permutability (or IP) classes, where two variables are intensionally permutable if
they can be interchanged while leaving the constraints unchanged. Intuitively, two variables
are intensionally permutable if they will undergo the same events (i.e. domain reductions)
during search. The IP classes of the whole problem are computed by combining the IP
classes of the problem’s constraints. They also show how their method may be generalised
to more complex symmetries that interchange collections of variables by grouping variables
into particular structures. It is possible that this approach could be generalised to models.
However, no algorithm is given for identifying these structures.
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10 Conclusions

We have proposed a new method for automatically detecting model properties. In particular,
we have shown how the method can be applied to the task of finding symmetries in constraint
satisfaction problem models. It takes advantage of existing, and even future, powerful de-
tection techniques defined for problem instances by generalising their results to models. We
have described an incomplete, ad hoc implementation that only considers a limited range
of symmetry patterns. While limited, the method is nonetheless capable of detecting all of
the symmetries in almost all of the benchmarks we have tested. Of course, more complete
implementations of the method will be able to detect even more kinds of symmetries.

Despite the effectiveness of our approach on the benchmark problems, there remain
some symmetries that it cannot find. The main source of incompleteness in the implementa-
tion is that only known symmetry patterns are found. However, it does find some of the most
commonly occurring forms of symmetry, and it is these kinds of symmetry that we believe
are the most profitable to exploit in symmetry breaking [20]. The approach is inherently
limited to finding symmetries that appear in every instance of a CSP model. Any symmetry
that occurs due to the data and therefore appears only in some instances (such as where the
data part is a graph that has a symmetry) cannot be found.

We have also discussed the generalisation of the method to properties of constraint mod-
els other than symmetries. The approach behind the method is not specific to symmetry, and
by replacing its components with others tailored to different properties, the resulting gener-
alised method can be used to detect other useful features of models. One such example is
subproblem equivalence, which is used by caching to avoid searching equivalent areas of the
search space and reduce search time. Preliminary results from our prototype implementation
suggest the generalised method has significant potential for accurately detecting properties
of constraint models.
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A MiniZinc models of examples

Example 1 (Latin square).

int : N =3 ;

array [1..N, 1..N] of var 1..N : x ;

constraint forall (i,j in 1..N, k in j+1..N) (x[i,j] !'= x[i,k]) ;
constraint forall (i,j in 1..N, k in j+1..N) (x[j,i] !'= x[k,i]) ;

Example 9 (Golomb ruler).
int : N ;
array [1..N] of var O..N*N : m ;
array [1..N*(N-1) div 2] of var 1..N*N : d =
[ m[jl-m[i]l | i,j in 1..N where i<j ];
constraint forall (i,j in 1..N*(N-1) div 2 where i<j) (d[i] !'= d[jl);

Example 19 (Variant of Latin square).
int : N ;
array [1..N*N] of var 1..N : x ;

constraint forall (i,j in 1..N*N where i < j / (i-1) mod N = (j-1) mod N)
(x[i] '= x[3D) ;
constraint forall (i,j in 1..N*N where i < j / (i-1) div N = (j-1) div N)

(x[1] '= x[3D) ;

Example 20 (Variant of Golomb ruler).

int : N ;

array [1..N-1] of var 1..N*N : d;

constraint forall (i,j,k,1 in 1..N where i<j / k<1 / (i !'=k j != 1))
(sum (a in i..j-1) (d[al) != sum (a in k..1-1) (d[al)) ;

solve satisfy;
output [show(d)];

N-queens.

int : N ;

array [1..N] of var 1..N : g
constraint forall (i in 1..N, j in i+1..N) (q[i] 1= qlj1);
constraint forall (i in 1..N, j in i+1..N) (q[il+i != q[jl+j);
constraint forall (i in 1..N, j in i+1..N) (ql[il-i !'= q[jl-j);

Social Golfers.

int : N ;
int : W ;
int : G ;

array [1..W, 1..G] of var set of 1..NxG : p ;

constraint forall (w in 1..W, g in 1..G) (card(plw,g]) = N) ;

constraint forall (w in 1..W, gi,g2 in 1..G where gl<g2)
(card(plw,gl] intersect plw,g2]) = 0) ;

constraint forall (wil,w2 in 1..W, gl,g2 in 1..G where wi<w2)
(card(p[wl,gl] intersect plw2,g2]) <= 1) ;



